NEUROSVM: An Architecture to Reduce the Effect of the Choice of Kernel on the Performance of SVM

نویسندگان

  • Pradip Ghanty
  • Samrat Paul
  • Nikhil R. Pal
چکیده

In this paper we propose a new multilayer classifier architecture. The proposed hybrid architecture has two cascaded modules: feature extraction module and classification module. In the feature extraction module we use the multilayered perceptron (MLP) neural networks, although other tools such as radial basis function (RBF) networks can be used. In the classification module we use support vector machines (SVMs)—here also other tool such as MLP or RBF can be used. The feature extraction module has several sub-modules each of which is expected to extract features capturing the discriminating characteristics of different areas of the input space. The classification module classifies the data based on the extracted features. The resultant architecture with MLP in feature extraction module and SVM in classification module is called NEUROSVM. The NEUROSVM is tested on twelve benchmark data sets and the performance of the NEUROSVM is found to be better than both MLP and SVM. We also compare the performance of proposed architecture with that of two ensemble methods: majority voting and averaging. Here also the NEUROSVM is found to perform better than these two ensemble methods. Further we explore the use of MLP and RBF in the classification module of the proposed architecture. The most attractive feature of NEUROSVM is that it practically eliminates the severe dependency of SVM on the choice of kernel. This has been verified with respect to both linear and non-linear kernels. We have also demonstrated that for the feature extraction module, the full training of MLPs is not needed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...

متن کامل

MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...

متن کامل

Impact of Patients’ Gender on Parkinson’s disease using Classification Algorithms

In this paper the accuracy of two machine learning algorithms including SVM and Bayesian Network are investigated as two important algorithms in diagnosis of Parkinson’s disease. We use Parkinson's disease data in the University of California, Irvine (UCI). In order to optimize the SVM algorithm, different kernel functions and C parameters have been used and our results show that SVM with C par...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2009